and 723 (mw) cm⁻¹ are expected from the lowering of symmetry resulting from the nonequivalence of the nitrogen atoms. Distinction between the possible configurations of the S₂N₂ group [planar ring (C_{2v}), puckered ring (C_s), or chain (C_{∞v}, C_s, or C₁)] is not possible inasmuch as five or six infrared-active modes are predicted for each configuration. That the ring is broken (chain), however, is unlikely because of the ease of interconversion of S₂N₂SbCl₅ and S₂N₂(SbCl₅)₂, the similarity to the S₂N₂ modes, and the lack of higher frequency bands expected for terminal N–S groups. The 1005-cm⁻¹ band can be reasonably assigned to an S–N ring system, because bands have been observed² for the S–N ring system in S₄N₄SbCl₅ in the same region (at 1060 and 968 cm⁻¹).

The possibility that the compounds $S_2N_2(SbCl_5)_2$ and $S_2N_2SbCl_5$ are tetra- and diadducts of S_4N_4 was considered. However, the observed bands showed no correlation with those of S_4N_4 or $S_4N_4SbCl_5$, and the forms of highest symmetry for $S_4N_4(SbCl_5)_4$ (planar ring, D_{4h}) and $S_4N_4(SbCl_5)_2$ (planar ring, D_{2h}) predict

four and eight observed modes, respectively. The lack of correlation in frequency and number of observed modes makes these formulations unlikely.

The infrared and chemical evidences support the formulation of $S_2N_2SbCl_5$ and $S_2N_2(SbCl_5)_2$ as adducts of the difunctional Lewis base S_2N_2 with the structures

A recent X-ray diffraction study of $S_2N_2(SbCl_5)_2$ confirms the second of these predicted structures.¹⁵

Acknowledgment.—This work was supported by the United States Atomic Energy Commission.

(15) R. L. Patton and K. N. Raymond, unpublished work.

Reactions of Disulfur Dinitride with Boron Trifluoride and Boron Trichloride

By R. LYLE PATTON AND WILLIAM L. JOLLY

Received October 28, 1968

Disulfur dinitride reacts with boron trichloride in dichloromethane to form the following compounds (each of which can be obtained as the principal product by suitable choice of reaction conditions): $S_4N_4BCl_3$, $S_2N_2(BCl_3)_2$, and an apparently polymeric material ($S_2N_2BCl_3$)_z. At 0°, $S_2N_2(BCl_3)_2$ loses BCl₃ to form a simple adduct $S_2N_2BCl_3$ which can be reconverted to the diadduct by treatment with BCl₃ at -78° . Whereas SbCl₅ displaces BCl₃ from $S_2N_2BCl_3$ to form $S_2N_2(SbCl_5)_2$, the polymeric material ($S_2N_2BCl_3$)_z is inert toward both BCl₃ and SbCl₅. The properties of $S_2N_2BCl_3$ and $S_2N_2(BCl_3)_2$ indicate that the S_2N_2 ring structure remains intact. Reaction of S_2N_2 with BF₃ yields only $S_4N_4BF_3$.

In a study of the reactions of S_2N_2 with SbCl₅ we have shown that S_2N_2 forms the adducts $S_2N_2SbCl_5$ and $S_2N_2(SbCl_5)_2$, in which the S_2N_2 ring remains intact.¹ To explore further the reactions of S_2N_2 as a Lewis base and the effects of coordination upon its stability, this study has been extended to include boron trifluoride and boron trichloride.

Experimental Section

General Data.—The methods for the manipulation and characterization of volatile and moisture-sensitive materials and for the preparation of S_2N_2 have been described.¹ Boron trichloride and boron trifluoride (Matheson) and antimony pentachloride (J. T. Baker Co.) were purified by vacuum-line fractional condensation. The observed 0° vapor pressure of the BCl₃ was 477 mm (lit.² 477 mm). The observed -111.6° vapor pressure of BF₃ was 310 mm (lit.³ 312 mm). Boron trifluoride was measured by pressure-volume methods, and BCl₃, SbCl₅, and S₂N₂ were measured by weight loss of tared storage bulbs after distillation *in vacuo* into reaction vessels.

Reactions were normally carried out in a vacuum-line reactor consisting of a small erlenmeyer flask attached by a 14/20 ground joint (sealed with Kel-F wax) to a Delmar-Urry 0-4-mm O-ring stopcock. The absence of grease prevented absorption of solvents and allowed use of the reactor as a tared vessel for determining solid product weights. In a typical study, S_2N_2 and CH_2Cl_2 were distilled into the reactor, warmed to 20° to dissolve the S_2N_2 , and then rapidly frozen at -196° . The volatile Lewis acid was then distilled in, and the reactor was warmed to the desired reaction temperature. The solvent and volatile products were removed and separated in vacuo, and the remaining nonvolatile solids were weighed and then removed in the glove bag. Antimony pentachloride and BF₃ could be cleanly fractionated from CH₂Cl₂ and directly measured, whereas BCl₃ could not and was determined by hydrolysis and titration of the boric acid with standard NaOH in the presence of mannitol.

Reaction of S₂N₂ with BF₃.—Disulfur dinitride (0.71 mmol), BF₃ (3.175 mmol), and CH₂Cl₂ (4 ml) were distilled into a reactor at -196° . Upon warming to -78° , a white suspension formed which became yellow at -45° , brown at 0°, and slowly formed an intense burgundy solution at 20°. The CH₂Cl₂ and excess BF₃ (2.817 mmol) were pumped off, leaving 84 mg

Contribution from the Department of Chemistry of the University of California and the Inorganic Materials Research Division of the Lawrence Radiation Laboratory, Berkeley, California 94720

⁽¹⁾ R. L. Patton and W. L. Jolly, Inorg. Chem., 8, 1389 (1969).

⁽²⁾ A. Stock and O. Pries, Chem. Ber., 47, 3109 (1914).

⁽³⁾ O. Ruff, A. Braida, O. Bretschneider, W. Menzel, and H. Plaut, Z. Anorg. Allgem. Chem., 206, 59 (1932).

of a burgundy solid which was identified as $S_4N_4BF_3$ on the basis of its infrared spectrum,⁴ its melting point of 145° (lit.⁴ mp 145– 147°), and its characteristic of slowly losing BF₃ when pumped on at room temperature. Complete conversion of S_2N_2 to S_4N_4 -BF₃ requires 0.355 mmol of BF₃ (obsd, 0.358 mmol), forming 83 mg of $S_4N_4BF_3$.

 S_2N_2 -BCl₃ Reaction at 0°.—Disulfur dinitride (1.55 mmol), BCl₃ (4.97 mmol), and CH₂Cl₂ (10 ml) were frozen together in a reactor at -196° . The mixture was held at -78° for 2 hr while the CH₂Cl₂ melted and the solution above the white solid became slightly yellow. The mixture was then warmed slowly to 0° while stirring. Only slight darkening of the suspension occurred until the temperature reached -35° , above which the suspension turned, in rapid succession, yellow, gray, gray-green, black, brown, and yellow. Then with brief effervescence, a dark red solution formed. During 0.5 hr at 0° this solution slowly turned light orange, and a slight film of an orange plastic material appeared. The appearance of the solution was then unaffected by warming to 20° or cooling to -78° . The reaction mixture was held at -78° while BCl₃ was distilled off *in vacuo* and then warmed to 0° while removing the remaining CH_2Cl_2 . A slight amount of N_2 (0.017 mmol) was evolved in the reaction. No precipitation occurred during the solvent removal, but as the last of the CH2Cl2 distilled off, the solution darkened to orangebrown and finally left 0.314 g of a solid plastic-like layer (calcd for 1.55 mmol of $(S_2N_2BCl_3)_x$: 0.324 g). Repeated cooling to -196° and warming to 0° broke up this solid, but no further gases were evolved.

Several similar reactions were run with variations in the time held at -80° , the rate of warming, and the time held at 0° . The visual observations of the reactions and products were the same. All of the results are summarized in Table I. Only N₂, CH₂Cl₂, BCl₃, and slight traces of S₂Cl₂ were distilled from the reactions, leaving a product of composition $(S_2N_2BCl_3)_x$.

Table I Reactions of S_2N_2 with BCl₃ at 0°

[S₂N₂], mmol	[BCl ₃]/ [S ₂ N ₂]	N2 evolved, mmol	Product wt, mg	Caled wt for $(S_2N_2-BCl_3)_x$, mg
0.54	5.1	Trace	108	113
0.77	4.8	0.003	161	161
1.16	2.6	0.011	240	242
1.42	3.2	0.015	300	297
1.55	3.2	0.017	314	324
2.90	3.2	Trace	607	607

Nujol mulls of these products all absorbed strongly throughout the region 670-1350 cm⁻¹ with prominences on this general broad absorption occurring at 1300, 1240, 1080, 970, and 730 cm⁻¹. Broad absorptions also occurred at 640 and 510 cm⁻¹. These absorption maxima differed slightly in different samples in position and relative intensity.

After removal from the reactor, the product did not redissolve in either CH₂Cl₂ or CCl₄ at 20°, although some darkening of the solvent and S₂Cl₂ evolution occurred. Distillation of CH₂Cl₂ back into the reactor once resulted in slight coloring of the solvent and release of S₂Cl₂ and, in another case, in vigorous N₂ evolution at -10° .

In a sealed capillary the $(S_2N_2BCl_3)_x$ remained solid on heating to 360°, becoming brown above 120° and shrinking with evolution of a yellow liquid above 160°. When $(S_2N_2BCl_3)_x$ was held at 20° for 4 weeks or at 55° for 4 days, considerable decomposition occurred, with formation of BCl₃, S₂Cl₂, N₂, and traces of SCl₂. Pyrolysis at 90° or higher yielded S₂Cl₂, SCl₂, N₂, and only traces of BCl₃. (Passing the volatile products through a -80, -112, -196° fractionation train stopped S₂Cl₂, SCl₂, and BCl₃, respectively, which were then identified by their infrared spectra.³) The relative amounts of the volatile products and the empirical

(4) K. J. Wynne and W. L. Jolly, Inorg. Chem., 6, 107 (1967).

composition of the residue did not correspond to any unique stoichiometry.

Liquid boron trichloride (10.70 mmol) was distilled onto 161 mg of $(S_2N_2BCl_3)_x$, and the mixture was held at 0° for 2 hr, then cooled to -78° , and held for 1 hr before pumping off the BCl₃ at that temperature. Exactly 10.70 mmol of BCl₃ was recove: ed, indicating that no BCl₃ uptake by $(S_2N_2BCl_3)_x$ occurred at -78° . Antimony pentachloride (3.11 mmol) was then distilled onto the $(S_2N_2BCl_3)_x$, and the mixture was twice held at 20° for 30 min followed by cooling to -78° and pumping. No gases were removed. The reactor was then warmed to 20° while pumping to remove all of the free SbCl₅. No BCl₃ or other gases were removed and the product weight remained 161 mg. Antimony pentachloride obviously did not displace BCl₃ from or add to the $(S_2N_2BCl_3)_x$.

 S_2N_2 -BCl₃ Reaction at -78°.—When suspensions of S_2N_2 , CH_2Cl_2 , and excess BCl_3 were held for extended periods at -78° and then subjected to pumping at that temperature to remove the CH₂Cl₂ and excess BCl₃, measurement of the unreacted BCl₃ showed that products approaching the composition $S_2N_2(BCl_3)_2$ were obtained. The reaction times and calculated [BCl₃]/ $[S_2N_2]$ ratios for the products for several runs were: 6 hr, 1.67; 15 hr, 1.83; 2.5 days, 1.865; 5 days, 1.96; 6.5 days, 1.83. When the product of the 6.5-day run (containing 0.86 mmol of S_2N_2 and 1.57 mmol of BCl_3) was warmed slowly while pumping, the creamy white solid evolved 0.70 mmol of BCl_3 between -35and 0°. Further pumping at 0° for 2 hr evolved 1 mg of S_2Cl_2 and no BCl₃. These data correspond to an empirical product composition $S_2N_2 \cdot 1.01BCl_3$; the product weight (178 mg) was also in good agreement with that calculated for the formation of $S_2N_2BCl_3$ (179 mg). (In each of the above runs, similar evolution of BCl₃ on warming to 0° left a product composition of S₂N₂BCl₃.) The remaining solid was treated with a measured excess of BCl₃ in CH₂Cl₂ at -78° for 2 hr, and then the reaction mixture was evacuated at that temperature. The product retained 0.625 mmol of the BCl₃, but all of this BCl₃ was evolved when the product was again warmed to 0° in vacuo. In a repetition of this procedure without CH₂Cl₂, 0.615 mmol of BCl₃ was retained at -78° and then evolved at 0°. In a second repetition of the procedure, 0.56 mmol of BCl₃ was retained at -78° and then evolved at 0°. Then the remaining product was treated with 3.90 mmol of antimony pentachloride at 20° for 1 hr. After cooling to -78° for 0.5 hr, the reactor was evacuated at -78° , and BCl_3 was removed. The reactor (still containing the $SbCl_5$) was twice warmed to 20°, returned to -78° for further BCl₈ removal, and then warmed to 20° to pump off the SbCl5. The total BCl₃ removed (0.55 mmol) corresponded to the BCl₃ reversibly absorbed in the previous treatment (0.56 mmol). The weight gain, corrected for the BCl3 lost, corresponded to the absorption of 1.08 mmol of SbCl₅.

A similar sequence of experiments, in which BCl₃ was absorbed at -78° and removed at 0°, was performed on the product of the 15-hr run mentioned above containing originally 1.30 mmol of S₂N₂. The final BCl₃ treatment, in which 1.03 mmol of BCl₃ was evolved at 0°, was again followed by treatment with excess SbCl₅. A 0.99-mmol amount of BCl₃ was evolved while 2.05 mmol of SbCl₅ was retained. The infrared spectrum of the products after treatment with SbCl₅ showed the presence of S₂N₂-(SbCl₅)₂.¹ Extraction of the product with dichloromethame yielded a solution from which pure S₂N₂(SbCl₅)₂ was obtained (identified by its infrared spectrum¹) and left some residue with the appearance and infrared spectrum of (S₂N₂BCl₃)_x.

The creamy white products of composition $S_2N_2BCl_3$ yellowed slightly when warmed at 0° during the course of subsequent BCl₃ treatments and slowly darkened to orange with evolution of S_2Cl_2 when warmed above 0°. However, at -15° in sealed tubes the material remained stable indefinitely without darkening or change in its infrared absorptions. In a sealed capillary it turned red-orange at 50° before melting at 55° with decomposition.

When dichloromethane was distilled onto $S_2N_2BCl_3$ at -196° and warmed to -78° , the conversion of $S_2N_2BCl_3$ to $(S_2N_2BCl_3)_z$ occurred relatively rapidly, with rapid darkening of the solution. Whenever excess BCl_3 was present, darkening of the solution did not occur until around -35° .

In Nujol mulls, the infrared spectra of fresh samples of S_2N_2 -BCl₃ showed the following peaks (in cm⁻¹): 1115 (ms), 950 (w), 840 (m), 788 (wm), 728 (s, b), 682 (mw), 610 (ms), and 467 (m). An $S_2N_2BCl_3$ sample was allowed to stand 24 hr at 20° and a Nujol mull was taken; the $S_2N_2BCl_3$ absorptions were gone and absorptions characteristic of $(S_2N_2BCl_3)_2$ had appeared.

Addition of BCl₃ to S_2N_2 at 20°.—Slow addition of a BCl₃ (2.20 mmol) solution to S_2N_2 (1.58 mmol) in CH₂Cl₂ at 20° in the glove bag resulted in a black, opaque suspension which cleared after several minutes to a dark red solution which finally turned orange-red. Concentration and cooling of this solution yielded pure crystals of S₄N₄BCl₃ as shown by its infrared spectrum⁴ and melting point of 136° (lit.⁴ mp 137–138°). Infrared spectrometry indicated that the residue from evaporation of the remaining solvent consisted of S₄N₄BCl₃, with no S₄N₄ or S₂N₂BCl₃ impurity.

 $(SN)_z$ -BCl₃ Reaction.—Samples of $(SN)_x$ underwent reaction with BCl₃ during several days at 20° to give what appeared to be $(S_2N_2BCl_3)_x$, on the basis of infrared studies.

Results and Discussion

Reaction with Boron Trifluoride.—When disulfur dinitride is added to excess boron trifluoride in dichloromethane, only $S_4N_4BF_3$ is formed, whereas the analogous reaction with SbCl₅ yields an adduct of S_2N_2 . We believe the difference may be explained by the relative weakness of BF₃ as a Lewis acid compared with SbCl₅ and by the assumption that the S_4N_4 acid adduct is formed by a second-order reaction

$$S_2N_2 + S_2N_2 \cdot (acid) \longrightarrow S_4N_4 \cdot (acid)$$
 (1)

In the case of $S_2N_2SbCl_5$, the equilibrium concentration of S_2N_2 is too low for this reaction to proceed at an appreciable rate unles an excess of S_2N_2 is added to the system. In the case of $S_2N_2BF_3$, the equilibrium concentration of S_2N_2 is high enough for the reaction to proceed and to prevent the isolation of $S_2N_2BF_3$.

Reactions with Boron Trichloride at 0°.—The results of the reactions in which S_2N_2 and BCl_3 were warmed to 0° in dichloromethane show that a product of composition $(S_2N_2BCl_3)_x$ was formed. However, the broad, diffuse, varying infrared spectra of these products showed no correspondence to known S2N2, S4N4, or BCl₃ adducts. Also, it was not possible to displace BCl₃ from $(S_2N_2BCl_3)_r$ with SbCl₅ as might have been expected for a simple adduct inasmuch as SbCl₅ is a stronger Lewis acid than BCl3 and does effect this displacement on S4N4BCl3.2 Thus it appears that (S2N2- $BCl_3)_x$ is not an adduct involving intact S_2N_2 and BCl_3 units but rather that polymerization has occurred, possibly with partial chlorination of the sulfur atoms. The inability of the product to dissolve after removal of the dichloromethane suggests that the degree of polymerization increased in the solid or highly concentrated state.

The reaction of polymeric sulfur nitride, $(SN)_x$, with boron trichloride gives a material having the same properties and approximately the same composition as the $(S_2N_2BCl_3)_x$ prepared from S_2N_2 and BCl_3 at 0° . However the $(SN)_x$ -BCl₃ reaction must be carried out at temperatures around 20° , and at these temperatures side reactions take place, precluding the isolation of a pure product.

Reactions with Boron Trichloride at -78° .—The data for reactions performed at -78° , in which the solvent and excess BCl₃ were removed at that temperature, indicate the formation of a simple labile diadduct $\mathrm{S}_2\mathrm{N}_2(\mathrm{BCl}_3)_2$ and a small amount of $(\mathrm{S}_2\mathrm{N}_2\mathrm{BCl}_3)_{\mathit{x}}.$ The $S_2N_2(BCl_3)_2$ dissociates reversibly on warming to 0° to BCl₃ and a monoadduct S₂N₂BCl₃. The ability of $S_2N_2BCl_3$ to add BCl_3 at low temperatures distinguishes it from $(S_2N_2BCl_3)_x$, which is inert to addition of a second mole of BCl₃. The slight decrease in the BCl₃ reversibly absorbed after each successive BCl₃ replacement was probably caused by a slight amount of the irreversible rearrangement (polymerization) S₂N₂BCl₃ \rightarrow (S₂N₂BCl₃)_x occurring at temperatures near 0°. This latter reaction occurs readily in dichloromethane solution whenever excess boron trichloride is absent, even at low temperatures. Apparently the polymerization is blocked when both nitrogens of S₂N₂ are coordinated to BCl₃. The amount of BCl₃ reversibly absorbed is a measure of the monoadduct S2N2BCl3 present in a mixture of $S_2N_2BCl_3$ and $(S_2N_2BCl_3)_{z_2}$, as evidenced by the displacement, on treatment with SbCl₅, of BCl₃ in only the amount equal to that reversibly absorbed in the previous BCl₃ treatment. This displacement of BCl₃ to form the known¹ disulfur dinitride adduct $S_2N_2(SbCl_5)_2$ is in agreement with the relative Lewis acid strengths of SbCl₅ and BCl₃ and supports the formulation of $S_2N_2BCl_3$ and $S_2N_2(BCl_3)_2$ as adducts of S_2N_2 . The residue of $(S_2N_2BCl_3)_x$ left after washing out the $S_2N_2(SbCl_5)_2$ further confirms its presence as the inert material. The data presented correspond quantitatively to the reactions

$$(2 + y)BCl_{3} + (1 + y)S_{2}N_{2} \xrightarrow{CH_{2}Cl_{2}} \\ \xrightarrow{-78^{\circ}} \\ S_{2}N_{2}(BCl_{3})_{2} + (y/x)(S_{2}N_{2}BCl_{3})_{x} \quad (2)$$

$$S_2N_2(BCl_3)_2 \xrightarrow{0^{\circ}}_{-78^{\circ}} S_2N_2BCl_3 + BCl_3$$
 (3)

$$S_2N_2BCl_3 \xrightarrow{slow} (S_2N_2BCl_3)_x$$
 (4)

$$S_2 N_2 B C l_3 + 2 S b C l_5 \longrightarrow S_2 N_2 (S b C l_5)_2 + B C l_3$$
(5)

Formation of S₄**N**₄**BCl**₃.—The formation of S₄**N**₄**BCl**₃ by the addition of BCl₃ to an S₂N₂ solution is analogous to the formation of S₄N₄SbCl₅¹ and S₄N₄BF₃ from S₂N₂. In each of these reactions, the mechanism is probably the initial formation of an adduct of the type S₂N₂. (acid), followed by reaction 1.

In adducts in which the boron atom of BCl₃ is bonded directly to the central atom of a Lewis base molecule, a broad infrared absorption envelope characteristic of the BCl₃ portion of the adduct is found with maxima in the 700–800-cm⁻¹ region.^{5,6} Also, sulfurnitrogen compounds usually have strong absorptions in and near this region. For example, S_2N_2 ,⁷ S_2N_2 -

⁽⁵⁾ K. Nakamoto, "Infrared Spectra of Inorganic and Coordination Compounds," John Wiley & Sons, Inc., New York, N. Y., 1963.

⁽⁶⁾ K. J. Wynne and J. W. George, J. Am. Chem. Soc., 87, 4750 (1965).

⁽⁷⁾ J. R. W. Warn and D. Chapman, Spectrochim. Acta, 22, 1371 (1966).

SbCl₅,¹ and S₂N₂(SbCl₅)₂¹ have absorptions at 795 and 663, 800 and 723, and 818 cm⁻¹, respectively. It seems likely that all of the infrared absorptions of S₂N₂BCl₃ near this region (at 840 (m), 788 (wm), 728 (s, b), and 682 (mw) cm⁻¹) may result from combinations of S–N and BCl₃ modes. The remaining S₂N₂BCl₃ absorptions (at 1115, 950, 610, and 467 cm⁻¹) corre-

spond closely in position and shape to absorptions in $S_2N_2SbCl_5$. Thus the infrared and chemical evidences support formulation of $S_2N_2BCl_3$ and $S_2N_2(BCl_3)_2$ as adducts of the same type as those of S_2N_2 with $SbCl_5$.¹

Acknowledgment.—This research was supported by the U. S. Atomic Energy Commission.

CONTRIBUTION FROM THE WILLIAM RAMSAY AND RALPH FORSTER LABORATORIES, UNIVERSITY COLLEGE, LONDON, W.C.1, UNITED KINGDOM

Infrared Spectra, Laser Raman Spectra, and Force Constants of the Metal-Hexahalo Species $R_2M^{IV}X_6$, RM^VX_6 [R = $(C_2H_5)_4N$ or Cs; M^{IV} = Ti, Zr, or Hf; M^V = Nb or Ta; X = Cl or Br], and WCl₆

BY W. VAN BRONSWYK, R. J. H. CLARK, AND L. MARESCA

Received December 17, 1968

The infrared and laser Raman spectra of a series of metal-hexahalo species of groups IV-VI have been recorded in the range 700-70 cm⁻¹. The compounds are R_2MX_6 [R = (C₂H₆)₄N or Cs; M = Ti, Zr, or Hf; X = Cl or Br], RMX₆ [R = (C₂H₆)₄N or Cs; M = Ti, Zr, or Hf; X = Cl or Br], RMX₆ [R = (C₂H₆)₄N or Cs; M = Nb or Ta; X = Cl or Br], and WCl₆. Assignments for the three Raman-active and two infrared-active fundamentals are made; in addition the value for the inactive fundamental ν_6 (t_{2n}) has in some cases been deduced from infrared-active combination bands. Force constants for the hexahalo species have been calculated on the assumption both of a modified Urey-Bradley force field (MUBFF) and of a generalized valence force field (GVFF). The value for ν_6 could thus be calculated and compared with the value deduced from combination bands. For both force fields the average value of the bond stretching force constants for the quadrivalent ions lies below that for quinquevalent ions, which in turn lies below that for WCl₆. For example, on the basis of the MUBFF, K_{nv} for the MCl₆²⁻ ions is ~1.0 mdyn/Å, for the MCl₆⁻ ions it is ~1.3 mdyn/Å, and for WCl₆ it is ~1.6 mdyn/Å. This increase in K with increase in the oxidation state of the metal is consistent with previous findings on other complex ions. In addition, $K_{MCl} > K_{MBT}$ in all cases for a given central metal atom. The expected isotopic structure of the a_{1g} mode of an MCl₆ molecule is calculated, but could not, in practice, be resolved for either the TiCl₆²⁻ or the TaCl₆⁻ ions.

Introduction

Although many studies of the vibrational spectra of MX_6 species (X = Cl or Br) of the later transition metals and of the nonmetals have been made, very few have been reported for the corresponding early transition metal species. Recent infrared and Raman spectral measurements¹ on the $TiCl_{6}^{2-}$ ion have shown that the original data² were incorrect and, consequently, that force constant calculations based thereon³ are unfounded. Accordingly we have recalculated the force constants for this ion, both as the cesium and as the tetraethylammonium salts, in terms (a) of a modified Urey-Bradley force field (MUBFF) and (b) of a generalized valence force field (GVFF). The infrared and Raman data on ZrCl62-, HfCl62-, NbCl6-, and TaCl6ions, on WCl6, and also on the corresponding hexabromo species, are nonexistent, fragmentary, or incorrect. We report herein the complete data for all of these ions, usually both as the cesium and as the tetraethylammonium salts, the band assignments, and the force constants according to both the MUBFF and the GVFF bases. The variations of the bond stretching

force constants with change of halogen and with change of the oxidation state of the metal atom are delineated. In general, the data have been gathered for the solid state only, owing to the difficulty (if not impossibility) of finding a solvent or solvents in which the species would be both sufficiently soluble and sufficiently stable for adequate spectral measurements to be made. It is recognized that solid-state spectra may be complicated by site symmetry and correlation splitting and also by slight frequency shifts of the normal modes from their values for the isolated ions. However, in those cases for which reliable data in the dissolved as well as the solid states could be obtained (TiCl₆²⁻ ion¹ and TaCl₆⁻ ion, see below) these effects appear to be slight.

Experimental Section

Preparation of Compounds.—The $TiCl_6^{2-}$ and $TiBr_6^{2-}$ ions were prepared as described previously.^{1,4}

⁽¹⁾ R. J. H. Clark, L. Maresca, and R. J. Puddephatt, Inorg. Chem., 7, 1603 (1968).

⁽²⁾ M.-E. P. Rumpf, Compt. Rend., 202, 950 (1936).

⁽³⁾ C. W. F. T. Pistorius, J. Chem. Phys., 29, 1328 (1958).

The tetraethylammonium salts $[(C_2H_5)_4N]_2ZrCl_6$ and $[(C_2H_6)_4-N]_2HfCl_6$ were prepared by a modification of the method involving thionyl chloride as solvent.⁵ The metal tetrachloride in thionyl chloride was added to a slight stoichiometric excess

⁽⁴⁾ R. J. H. Clark, "The Chemistry of Titanium and Vanadium," Elsevier Publishing Co., Amsterdam, 1968.

⁽⁵⁾ D. M. Adams, J. Chatt, J. M. Davidson, and J. Gerratt, J. Chem. Soc., 2189 (1963).